

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Maestría en Ciencia de Datos

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Temas de Análisis Multivariante Aplicado		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuartosemestre	371042	35 Mediación docente
		65 Estudio independiente

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno será capaz de utilizar técnicas multivariantes para modelar problemas de más de dos dimensiones.

TEMAS Y SUBTEMAS

1. Componentes principales

- 1.1 Introducción.
- 1.2 Cálculo de los componentes.
- 1.3 Propiedades de los componentes.
- 1.4 Interpretación de los componentes.

2. Análisis de correspondencias

- 2.1 Búsqueda de la mejor proyección (filas vs columnas).
- 2.2 Distancia Chi-cuadrado.
- 2.3 Asignación de puntuaciones.

3. Análisis Factorial

- 3.1 El modelo factorial.
- 3.2 Método del factor principal.
- 3.3 Estimación Máximo Verosímil.
- 3.4 Determinación del número de factores.

4. Análisis Discriminante

- 4.1 Clasificación entre dos poblaciones.
- 4.2 Generalización para varias poblaciones normales.
- 4.3 Poblaciones desconocidas. Caso general.

ACTIVIDADES DE APRENDIZAJE

El profesor siempre buscará un balance entre la teoría matemática detrás del método, su aplicación a problemas prácticos y su implementación computacional. Introducir al alumno a un lenguaje computacional de preferencia con licencia libre, por ejemplo Python, R, entre otros.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se realizarán al menos dos evaluaciones parciales y una final, el alumno debe realizar un trabajo relacionado con los temas del curso. El profesor deberá tomar en cuenta la participación activa del alumno en clases y tareas, además de su puntual asistencia a las clases.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Applied Multivariate Statistical Analysis (5ta. Ed.). Richard A. Johnson & Dean W. Wichern. Prentice Hall 2002.
- 2. Applied Multivariate Statistical Analysis. Wolfgang Hardle & Leopold Simar. Springer 2003.
- 3. Using Multivariate Statistics (7ma. Ed.) Barbara G. Tabachnick & Linda S. Fidell. Pearson 2021.

Consulta:

- 1. A First Course in Multivariate Statistics. Bernard Flury. Springer 1997.
- 2. An Introduction to Multivariate Statistical Analysis (3ra. Ed.). T. W. Anderson. Wiley 2003.
- 3. Univariate, Bivariate, and Multivariate Statistics Using R: Quantitative Tools for Data Analysis and Data Science (1ra. Ed.). Daniel J. Denis. Wiley 2020.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Ciencias Matemáticas, Matemáticas Aplicadas, Estadística, Ciencia de Datos o afines, con conocimientos en el uso de software como Python, R, Minitab, SAS o SPSS.

Vo.Bo M.T.C.A. ERIK GERMÁN RAMOS PÉREZ COORDINADOR DE LA UNIVERSIDAD VIRTUAL AUTORIZÓ L.I. MARIO ALBERTO MORENO ROCHA VICE-RECTOR ACADÉMICO